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Ras-Induced Transformation and Signaling Pathway

Takaharu Yamamoto, Shinichiro Taya, and Kozo Kaibuchi1

Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Nara 630-0101

Received August 13, 1999; accepted August 23, 1999

Ras is a signal-transducing, guanine nucleotide-binding protein for various membrane
receptors including tyrosine kinase receptors. Ras participates in the regulation of cell
proliferation, differentiation, and morphology. Activated ras oncogenes have been identifi-
ed in various forms of human cancer including epithelial carcinomas of the lung, colon, and
pancreas. The cells of these cancers, as well as those that have been experimentally
transformed by the activated ras gene, exhibit abnormal growth, morphological changes
and alterations of cell adhesions. Although the main effector protein has been thought to be
Raf serine/threonine kinase, research has revealed that the Ras-induced signaling pathway
is mediated by multiple effector proteins and has the crosstalk with various factors
containing other small GTPases. In this review, we summarize the involvement of each
effector protein for Ras and the crosstalk with other small GTPases in Ras-induced
transformation.
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Ras (H-Ras, K-Ras, N-Ras) is a signal-transducing small
guanosine triphosphatase (GTPase) that plays central roles
in the control of cell growth and differentiation (1-3). Ras
has guanine nucleotide-binding activity and GTPase activ-
ities. Ras has GDP-bound inactive and GTP-bound active
forms which are intercompatible by the GDP/GTP ex-
change and GTPase reactions. The GTPase reaction is
regulated by GTPase-activating proteins (GAPs), such as
pl20 GAP, NF1, and Gapl. The GDP/GTP exchange
reaction is regulated by guanine nucleotide exchange fac-
tors (GEFs). Ras is known to be the downstream molecule
of receptor tyrosine kinases, such as EGF and PDGF
receptors, and protein kinase C (4-9). The activation of
these proteins results in the stimulation of GEFs and the
conversion from the GDP-bound form to GTP-bound form
of Ras. Figure 1 shows the well-known Ras-mediated
signaling pathway. Activation of receptor tyrosine kinases
recruits Sos guanine nucleotide exchange factor to the
plasma membrane, mediating the association with an
adaptor protein Grb2. The recruitment of Sos leads to the
activation of Ras, followed by the activation of effector
proteins. Recently two groups identified a Ras guanine
nucleotide exchange factor with calcium- and diacylgly-
cerol-binding motifs (namely Ras GRP or CalDAG-GEFII),
suggesting the existence of a mechanism whereby the
activation of Ras is regulated directly by the second
messengers, calcium and diacylglycerol (10, 11).

Mutations in ras genes have all been found in human
tumors, and the frequency of ras mutations is the highest
among any genes in human cancers (12, 13). Ras-trans-
formed fibroblasts show typical anchorage-independent
growth and morphological change. These phenotypes are
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thought to be caused by Ras-induced gene expression and
rearrangement of the cytoskeleton and cell adhesions.
Although the Raf family members are the only effector
proteins for which genetic evidence is available regarding
activity as a candidate Ras effector, Ras-induced transfor-
mation can not be explained by the effect of the Raf family
alone. Recently various candidates for Ras effector proteins
have been reported (Fig. 2). We will summarize the
putative roles of these effector proteins and other Ras-like
small GTPases in Ras-induced transformation.

Ras effectors and Ras-induced transformation
Raf. Raf serine/threonine kinases (Raf-1, A-Raf, and

B-Raf) are the best-characterized effector for Ras and the
only one for which genetic evidence has been obtained.
Growth factor-mediated or oncogenic activation of Ras
recruits Raf to the plasma membrane, where it is activated
by a mechanism which is not fully understood. Several
observations revealed that the activation of Raf plays an
important role in Ras-induced transformation (14, 15). The
activated Raf phosphorylates and activates MEK (MAPK/
ERK kinase). Subsequently, the activated MEK phosphor-
ylates and activates MAPK (mitogen-activated protein
kinase). The activated MAPK is translocated to the nucleus
and activates several transcriptional factors such as TCF
and Jun. Although Raf plays critical roles by deregulating
the mitogenic signaling in Ras-induced transformation,
some evidence indicate that Raf alone is not sufficient to
cause the cytoskeletal and morphological changes in Ras-
induced transformation (16-18). Raf-CAAX (Raf-1 kinase
which is targeted to plasma membrane) fails to induce
cytoskeletal rearrangement in some fibroblasts and endo-
thelial cells under the conditions where activated Ras can
induce membrane ruffling. Moreover, the involvement of
other effectors in Ras-induced transformation was indicat-
ed by the fact that Raf-binding defective mutants of Ras,
which can interact with other effectors, possess some but
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not full transforming activities.
Phosphatidylinositol 3-kinase. Phosphatidylinositol

3-kinase (PI 3-kinase) interacts with the activated Ras and
is itself activated (19-21). PI 3-kinase is involved in the
regulation of the actin cytoskeleton by growth factors such

Growth factors

( MAP Kinase*)(ERK)

Transcriptlonal Factors (TCF, Jun, etc)

Fig. 1. Ras signaling pathway. Growth factor-mediated activa-
tion of receptor tyrosine kinases recruits Sos guanine nucleotide
exchange factor to the plasma membrane through the association with
an adaptor protein Grb2. The recruitment of Sos leads to the
activation of Ras. The activated Ras recruits Raf to the plasma
membrane and Raf is activated by a mechanism which is not fully
understood. The activated Raf phosphorylates MEK (MAPK/ERK
kinase) and activates it, following which the activated MEK phos-
phorylates MAP kinase (mitogen-activated protein kinase) and
activates it (ERK). The activated MAPK is translocated to the nucleus
and activates several transcriptional factors such as TCF and Jun.

as PDGF and insulin (22-24). The experiments using
various effector mutants of Ras revealed that the activation
of PI 3-kinase is necessary for actin cytoskeletal rearrange-
ment in the Ras-induced transformation and that it is
mediated by the activation of Rac (18). Since the activated
form of PI 3-kinase alone can not cause cellular transforma-
tion of fibroblasts, cooperative workers such as Raf family
proteins appear to be necessary for the PI 3-kinase-
mediated pathway in Ras-induced transformation.

Ral GEFs. The yeast two hybrid system revealed that
Ral guanosine exchange factors (Ral GEFs) (RalGDS, RGL,
RLF) bind to the activated Ras. The Ras-associating domain
of RalGDS has low sequence similarity with that of Raf
kinase, but it has been found that their overall three-di-
mensional structures are very similar to each other (25).
Many proteins, including AF-6, RIN1 and PLC210 (see
below), have been found to contain the Ras-associating
domain which shows high sequence homology with that of
RalGDS (Fig. 3). RalGDS stimulates the GDP/GTP ex-
change of Ral in a Ras-dependent manner in COS cells (26,
27). RalGDS and Raf synergistically stimulate cellular
proliferation and gene expression (28, 29). These results
suggest that the Ral GEF-Ral pathway contributes to the
Ras-induced transformation.

AF-6. We previously identified the ALL-1 fusion part-
ner from chromosome 6 (AF-6) as a novel Ras effector (30).
AF-6 was identified as the fusion partner of acute lympho-
blasticleukemia-1 (ALL-1) protein (31). The ALL-l/AF-6
chimeric protein is a critical product of the t(6;l l) abnor-
mality associated with some human leukemias. AF-6 binds
to the activated Ras via its amino-terminal region in vitro
(30) and also in vivo (32). AF-6 has the PDZ domain, which
is thought to localize AF-6 at specialized sites of the plasma
membrane such as cell-cell contact sites. AF-6 accumulates
at various sites of cell-cell contact, such as cell-cell adhe-
sion (33, 34), and synaptic junctions (35), suggesting that
AF-6 plays a role in the regulation of cell-cell adhesion.
Consistently, it has recently been shown that the absence of
AF-6 disrupts epithelial cell-cell adhesion and cell polarity
during mouse development (36). AF-6 interacts with ZO-1
which is one of the cell-cell adhesion molecules. ZO-1
interacts with the Ras-associating domain of AF-6, and this
interaction is inhibited by the activated Ras (Fig. 4). The

GDP

Gene
expression

Cytoskeleton
Cell survival

Cell adhesion

Fig. 2. Ras effectors. Ras contributes to various
cellular processes and multiple effector proteins of
Ras are involved in Ras-mediated signaling. They
include Raf, PI 3-kinase, RalGDS, AF-6, andRINl.
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overexpression of activated Ras in Ratl cells results in the
perturbation of cell-cell contacts, followed by a decrease in
the accumulation of AF-6 and ZO-1 at the cell surface (34).
It remains to be clarified whether AF-6/ZO-1 interaction is
really involved in the regulation of the cell-cell adhesion
and the Ras-induced transformation.

Recently we identified Fam as an AF-6-interacting
protein (37). Fam is homologous to a deubiquitinating
enzyme in Drosophila, the product of the fat facets (faf)
gene (38). Although the genetic interaction of ras with fat
facets in Drosophila has been reported (39, 40), it remains
to be clarified whether Fam is involved in the Ras-induced
transformation and Ras signaling pathway in mammals.

PLC210. Recently a yeast two-hybrid screening identifi-
ed PLC210, a C. elegans phospholipase C as a Let-60 Ras-
binding protein (41). PLC210 contains a catalytic region
highly homologous to that of the PI-PLC family proteins.
This catalytic region contains the conserved amino acid
residue for the catalytic activity and for Ca2+-dependent
interaction with phosphoinositides. PLC210 contains two
Ras-associating domains conserved structurally among
RalGDS and AF-6. PLC210 binds to Ras in a GTP-depen-
dent manner via the region containing these domains, but it
is unknown whether this interaction affects the PI-PLC
activity of PLC210. In addition, PLC210 contains the
amino-terminal CDC25-like domain. This domain is
homologous to the catalytic domain of GDP/GTP exchange
factors for Ras, especially to those of mammalian Sos2 and
Drosophila Sos, suggesting that PLC210 is a bifunctional

RA PDZ

AF-6

RalGDS

RIN1
RA

Fig. 3. The proteins containing the Ras-associating domain.
The family of proteins containing a Ras-associating (RA) domain is
increasing. Among them, AF-6, RalGDS, and RINl are shown to
interact with the activated Ras. Abbreviation used in this figure: P,
proline-rich domain.

protein, which possesses two distinct catalytic activities. It
is unclear whether Ras regulates the activity of PLC210
and whether a mammalian counterpart of C. elegans
PLC210 exists. However, the observation that the phos-
phoinositide turnover rate was elevated in Ras-transform-
ed cells implied the presence of unknown enzymes like
PLC210 in mammals.

RINl. RINl (Ras interaction/interference) was first
identified as a Ras-binding protein that suppresses the
activated RAS2 allele in S. cerevisiae (42, 43). RINl binds
to the activated Ras through its carboxyl-terminal domain
(Fig. 3) and this Ras-binding domain also binds to 14-3-3
proteins as Raf-1 does. In addition, RINl contains two other
functional domains, SH2 and proline-rich domain. The SH2
domain of RINl possesses the ability to interact with the
phosphotyrosine-containing proteins, but the physiological
partners for this domain are unknown. The praline-rich
domain in RINl is similar to the consensus SH3 binding
regions. Indeed, the amino-terminal region containing this
proline-rich domain binds to the SH3 domain of c-ABL
tyrosine kinase and is phosphorylated by c-ABL, but this
interaction does not affect the c-ABL catalytic activity (44).
These results indicate that RINl participates in multiple
signaling pathways, but it remains to be clarified whether
RINl is involved in the Ras-induced transformation.

Involvement of other small GTPases in Ras-induced
transformation

Rapl. Rapl was identified as an antagonist of Ras-in-
duced transformation (45). Since Rapl contains an effector
region almost identical to that of Ras, it can interact with
similar effectors such as Raf-1 and Ral GEF. These interac-
tions may be utilized for trapping Ras effectors to antago-
nize Ras signaling. On the other hand, it has been reported
that Rapl has positive effects on mitogenesis and oncogenic
transformation (46). Therefore, it should be further ex-
amined whether the function of Rapl is positive or negative
against Ras-induced transformation.

Ral. Ral consists of RalA and RalB. Since insulin and
EGF-induced activation of Ral is inhibited by dominant
negative Ras, the Ral pathway is a downstream signaling
pathway of Ras (47). As described above, Ral GEF is one of
the Ras effectors and Ral GEF-Ral pathway may contribute
to the Ras-induced transformation. Surprisingly, although

Occludln

Fig. 4. AF-6/ZO-1 interaction and Ras-induced
transformation. AF-6 is a peripheral protein at sites
of cell-cell contact such as cell cell adhesion. AF-6
interacts with ZO-1, a peripheral component of cell-
cell adhesions. The activated Ras inhibits the interac-
tion of AF-6 and ZO-1. The activated Ras may regulate
the state of AF-6/ZO-1 complex in Ras-induced trans-
formation. Abbreviations used in this figure: E, E-
cadherin; a, a-catenin; fi, /J-catenin.
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a dominant negative form of Ral blocks a Ras-dependent
transformation in NIH3T3 cells, RalV23 alone, a constitu-
tively activated form of Ral, can not efficiently induce the
oncogenic transformation as compared with the activated
Ras and Ral GEF (26, 48). This observation suggests that
the transformation induced by Ral GEF may require other
factors in addition to Ral. Two effectors for Ral are known,
RalBPl and phospholipase D (PLD). RalBPl interacts with
Ral in a GTP-dependent manner and contains a RhoGAP
homology domain which exhibits the GAP activity for Racl
and Cdc42 but not for RhoA (49-51). Although Rac and
Cdc42 contribute to the Ras-induced transformation as
described below, it is unclear whether the association of Ral
with RalBPl regulates the activity of these GTPase. PLD is
activated in v-Src transformation. Dominant negative RalA
mutants inhibited both v-Src- and v-Ras-induced PLD
activity suggesting the involvement of RalA in Ras/Src-
induced PLD activation (52).

Rho family. A critical role for the Rho family GTPases
in Ras-induced transformation is supported by a number of
experimental observations (53-59). The Rho family regu-
lates multiple signaling pathways that affect cell shape and
motility, transcription, and cell-cycle progression. In the
control of the actin-based cytoskeleton of fibroblasts, each
member of the Rho family is implicated in the formation of
a distinct structure: Cdc42 induces filopodia (24, 60), Rac
regulates the formation of lamellipodia and membrane
ruffling (61), and Rho is involved in the assembly of stress
fibers and focal adhesions (62). Recently we found that the
dominant active form of Rho (Rhovu) reverts not only the
formation of stress fibers and focal adhesions but also cell-
cell adhesions and that constitutively activated Rho-kinase,
a downstream effector of Rho, restores the assembly of
stress fibers and focal adhesions in Ras-transformed Ratl
fibroblast, suggesting that the Rho-Rho-kinase pathway is
inactivated in the cells expressing RasV12, and this may
contribute to oncogenic Ras-induced transformation (63).

Perspectives
To understand the mechanism by which Ras induces

transformation of certain types of cells, enormous efforts
have been made over the last decade to identify down-
stream effectors of Ras. As a result, a number of the
effectors have been isolated. Intensive analyses of their
functions have provided some insights regarding the modes
of action of Ras at the molecular level. However, the
mechanism underlying Ras induced abnormal growth,
morphological changes and alterations of cell adhesions
remains to be clarified. Further studies will lead to a better
understanding of how Ras induces transformation, includ-
ing rearrangements of cytoskeleton and cell adhesion.
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